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I INTRODUCTION 

There are several properties of Laplace's equation that have important applications. One of these 
properties states that if the magnetic field normal to the surface bounding a source-free region of space is zero 
everywhere over that surface, then all magnetic field components within the volume are zero [1]. Another 
related property states that if both orthogonal components of magnetic field tangent to the bounding surface of a 
source-free region are zero everywhere over that surface, then all magnetic field components within the volume 
are once again zero [2]. The purpose of this paper is to derive two analogous properties for special types of 
magnetic field gradients called "directional derivatives". Once these properties have been established, the 
boundary conditions ensuring uniqueness for gradient solutions inside the volume can be determined. 

There are many ways to compute the gradient of a magnetic scalar potential or field component. In 
general, the gradient of a magnetic scalar potential, <p, is expressed as Vp, and is equal to the negative of a 
magnetic field vector, H . In Cartesian coordinates the potential gradient is expressed as 

~d<p    -.dtp    fdq> ... 
V(p = l—T- + j—L- + k—!- (1) 

dx       dy       dz 

where ;', j, k   are unit vectors in the x, y, z directions, respectively. In generalized curvilinear coordinates . 
(1) must be modified to account for the curvature of the coordinate system. In an orthogonal curvilinear system 
(OCS), (1) is written as 

v^^Ua^-^-^L (2) 
V£       V<f2       >¥% 

where ax, a2, a3 are unit vectors in the direction of generalized coordinates £,, £2, £,; and where hl, h2, h3 

are the metrics that scale the curvilinear coordinate system under consideration [3]. The rate-of-change in each 
component of the vector in (2) is computed along a curved coordinate line while holding the other coordinates 
constant. 

To take the process one step further, the.gradient of each component in H could also be computed. In 
Cartesian coordinates, the complete gradient of H is given as 

„„     ?dHx    -mx    r8Hx n. 
ox        dy oz 

.dHy    «8Hy    rdHy —-+j—-+k—l 

dx dy dz 
VHy = i -^-+j-^-+k-^ (4) 

w„     ~dH2    ~cH2    rBH, 
VH2=i—- + j—2- + k—- (5) 

dx        dy dz 

where Hx, Hy, Hz are the magnetic field components in Cartesian coordinates; while in generalized 

coordinates (reference 3, pl22, eq. 7.4) the complete gradient would be 

„„     .  dHx     .   dHx     *   dH, ,« VH. = a. L + a  !_ + a  L. (6) 
\d^      2h2d%2      

3h,d^ 



NSWCCD-TR-1999/007 

VH2 = ä^ + ä2^^ + a3-^- (7) 
'/^     2h2d%2     

3h3d£3 

VH3 = ä^ + a2-^ + ä3-?%- .     (8) 
3      '^,      2h2d£2     

3V^3 

where #,, H2, Hi are the three components of magnetic field in generalized coordinates. (It should be 

noted that, in general, the metrics A, , h2, h3 are themselves functions of £,, £2, £3.) As was the case 

for the gradient of the magnetic potential, the gradients of the magnetic field vector components in a 
generalized coordinate system give the gradient along curved lines defined by the curvilinear coordinate. 
This curvilinear gradient is not the boundary condition being considered in this paper. 

In this paper, magnetic field gradient boundary conditions will refer to the directional derivatives of 
the magnetic field vectors. The directional derivatives give the rate-of-change in magnetic field along a 
straight line in a specific direction. The directional derivative of the magnetic field vector H in the direction 
of a unit vector a is given in Cartesian coordinates by [4] 

(a • V)/7 = i{a • VHX) + }(a ■ VHy) + k(a • Vtf z) (9) 

while, in generalized curvilinear coordinates the expressions are 

h{ 5|,     h2 8%2     h3 dg. 3 

H2 .   d\      dh2, (io) 
+ ——[ai —— - a2 —-] 

hxh2      d£2 S& 

H3       8hx cfo3l + —Ma, —- - a, —-1 

Kä.V)H]2=^??l-+a>dH^a>dH> 
A,   84,      h2  8£2     h3  84. 

'2 
-) 

(11) 
h2h3 "3^      ' 5#2 

Hx        8h2        8hx 
+ [a2 a, J 

hxh2       S£        3|2 

K  d$x     K d%2     hi d%3 

hxh3      d&        8%3 

where a,, a2, a3 are the components of a in curvilinear coordinates. The objective of this paper is to 

determine the magnetic field boundary conditions for directional derivatives that will guarantee all components 
of the complete magnetic field gradient are uniquely zero inside the bounded volume. 
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II Boundary Conditions for Directional Derivatives in the Surface-Normal Direction 

The standard derivation of the magnetic field properties of Laplace's equation will serve as the bases 
for proving the gradient cases. Following the procedure given in [1], applying the divergence theorem to 
HXVHX gives 

\v\HxS/Hx)dv = §(HxVHx).nda (13) 

where da is the differential area on the closed surface, S, that bounds the source-free volume, V, having 
differential volume dv (see Fig. 1), and h is the unit normal vector on the bounding surface that points into the 
volume. However, 

V • (HXVHX) = HXV
2HX + VHX ■ VHX (14) 

Figure 1. A Source Free Volume, V, bounded by the Surface, S 

Since Hx = -dq> I dx, then 

V^=-(^ + A + 4-) 
d3x    dxd2y    dxd2z 

(15) 
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which becomes 

£(VV)=0 (16) 

since <p is a solution to Laplace's equation. (In general, the order of differentiation in (15) can only be 
reversed in Cartesian coordinates.) Therefore, (14) reduces to v • (HXVHX) = VHX ■ VHX, so that (13) can be 
written as 

\\VHxfdv = §Hx{Z-VHxyia (17) 
v s 

Repeating this procedure for the y and z components gives 

\\VHy\2dv = §Hy{n-VHy}la (18) 

and 

j\VHtfdv = |/72(« • V/7z)fo (19) 

Adding (17) through (19) together, and rearranging yields 

j(v/7,|2+|v#,|2
+|V//zf)*v 

v 

= §H-[(n-V)H]da 
(20) 

The term in brackets on the right side of (20) is the directional derivative of H in the direction that is 
normal to the bounding surface. 

If all the components of the directional derivative in the direction normal to the surface are zero, then 
the right side of (20) is zero. Therefore, the integrand on the left side is also equal to zero. This means that all 
the magnetic field gradient components (i.e. the complete gradient of H) are zero inside the volume. 

It would appear at first glance that the zero requirements for all components of the directional 
derivative in the direction normal to the surface applies only to magnetic field vectors expressed in Cartesian 
coordinates. However, the result is more general. If H is expressed as 

H=mm+iiHh+i2Hh (21) 

where ix and t2 are unit vectors in the two orthogonal directions tangent to the surface (Fig. 1), then from (10) 
through (12), the three components of the directional derivatives in the normal direction (D  ,D    D   ) are 
given by 

""   h,di,   h.\d4„   h,h,td4, m 
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'■"   ä„ a&   />„/>„ a^ 

1 a/7,     jy   a/? 
A„=- ^--^-^L (24) 

*   ä„ a^„   äA2 54 

where hn, h, , h, are the metrics for the surface-normal and two orthogonal tangential directions, 

respectively. Therefore, forcing Dm = D   = D.n = 0 ensures (n ■ V)/T = 0 in (20). 

When examining (20), it becomes clear that the requirement for all three components of the 
directional derivatives to be zero may, in some cases, be too rigid. Expanding the integrand on the left side of 
(20) gives 

\VHxf + \VHyf + \VH2f =Hlc+H2
xy +H2

X2 

+ H%+H%+H2
r, (25) 

+ H2X+H2y+H22 

However, since H   =H  ,H   =H  , and H   =-(H   +H ), it needs only be shown that 
2X xz '        zy yz ' zz >■     xx yys ' * 

\VHX |2 +1VHy I = 0 to prove that the complete gradient inside the volume is zero. In fact, setting any two of 

the three terms on the left side of (25) to zero is sufficient for the complete gradient to be zero; which implies 
that in Cartesian coordinates only two of the three gradient boundary conditions are required. There are other 
coordinate systems in which only two of the three components of the normal directional derivatives are 
required. Therefore, the general boundary condition specifying all three components of the directional 
derivatives in the surface-normal direction is a sufficient condition, but not a necessary one. 

Equation (20) can now be used to prove the uniqueness of solutions to Laplace's equations for field 
gradient boundary conditions. Assume there are two possible solutions to Laplace's equations for field 
gradients inside the volume V, Ha and Hb. Let Hd =Ha-Hb, so that («• V)Fa - (n • V)Hb = 0 on the 
bounding surface. (It is a requirement that both solutions satisfy the same boundary conditions on the 

enclosing surface.) Therefore, since {ft ■ W)Hd = 0, \VH*f + Iv/H* + \VH2f = 0 inside the volume. This 

implies that the complete gradients of Ha and Hb are equal in this region, proving uniqueness of the solution. 

Ill Boundary Conditions for Directional Derivatives 
in the Surface-Tangential Directions 

The standard derivation of the tangential magnetic field boundary conditions for Laplace's equation 
will serve as the bases for proving the gradient cases. Following the procedure given in [2], the vector analogue 
of Green's first identity is 

j(VxP-VxQ-P-VxVxQ)iv 
(26) 

= §(PxVxQ)-hda 
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where as before S is a closed surface around the volume V. Let VHX = V x P x = V x Q"  (which implies 

Vx Vx<2* = o), where P" and Q* are given by Px = a,Px + aPx + ä3P3* and Qx = a,Qx + ä2Q
x + ä3Q

x. 

(The vector Px is shown to exist and is defined in the appendix for Cartesian coordinates.) Rearranging the 
right side of (26) gives 

J \VHxfdv = JPX- (VHX x h)da (27) 
v s 

Substituting « = f, x f2 in (27) and using a vector identity from [4] gives 

\\VHJ{dv=\p* %-VHx)i,-k-VHx)i2]da (28) 
V s 

Repeating this procedure for the y and z components gives 

\\VHy[dv^\py %■ VHy)t} -ft .V#,)?2]<fa (29) 

and 

\\VHzfdv = \P'%.VHytx-^.VHyt2]da (30) 
V s 

The terms inside the brackets on the right side of (28) through (30) are the directional derivatives of 
Hx, Hy, Ez in the two orthogonal directions tangent to the bounding surface. If these six directional 

derivatives are all zero, then the complete gradient within the volume is also zero. 

Once again it can be shown that the directional derivative boundary conditions apply to curvilinear 
coordinate systems. The six tangential directional derivative boundary conditions from (28) through (30) can 
be written as 

= /(?, • VH,)+ ]{tr VHy)+ k(t, ■ VH,) 

(f2-V)tf 

= '% • Vff J+ ](t2 ■ VH> k{t2 -Vtf z) 

Once again, if H is expressed as in (21), then from (10) through (12), the six components of the 
directional derivatives in the tangential direction (D   ,D   ,D   ,D   ,D   ,D   ) are given bv 

nh       Vi       hh       nh       Vi       h'l 

1 dH„    H.  dh, 
"*    \ d$h    hnhh dt„ 

(31) 

(32) 

(34) 
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1 dH,      H,   dh, 

1 8H     H.   dh 
Dnt = n- 2 3. (36) 

*    hh d$h    K\ d£„ 
1 dH,     H,   dh, 

Ar   = " "  (37) "    \ 8{h    h,h,2 dth 

1 dH,     H   dh,      H,   dh, 
D,, =- ± + -t±» '*. + —h h. (38) 

where all the terms have been defined previously. Therefore, if£>   =D   =D    -D    =D    =D    =0, then 
"h hh hh nh hh nh 

(trV)H = (t2-V)H = 0. 

Using the same arguments as for the surface-normal directional derivatives, it can be shown that all 
six components are not required for a Cartesian system, as is the case in some curvilinear coordinate systems. 
Therefore, the requirement that all six tangential directional derivatives be zero is a sufficient condition and not 
a necessary one. In addition, these six directional derivatives are sufficient to guarantee a unique complete 
gradient solution to Laplace's equation. 

IV CONCLUSION 

Specifying the three magnetic field directional derivatives in the normal direction over a closed surface 
around a source-free volume is a sufficient, but not necessary, condition to ensure a unique total field-gradient 
solution to Laplace's equation. Similarly, specifying the six magnetic field directional derivatives in the two 
orthogonal tangential directions over a closed surface around a source-free volume is also a sufficient, but not 
necessary, condition to ensure a unique total field-gradient solution to Laplace's equation. Although the proofs 
in this paper were conducted specifically for magnetic fields, the directional derivative boundary conditions 
should apply to any field-gradient boundary value problem in physics. In addition, it may be possible to use 
this theory to develop finite element techniques that use directional derivatives as input to boundary value 
problems and compute unique solutions for the complete gradient inside a volume. 
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APPENDIX 

In this appendix it will be shown that a vector P x can be found such that VHX =Vx?'. The 

magnetic field H can be represented as the curl of a vector potential A~ (H = V x 2) and can be written in 
Cartesian coordinates as 

/r-f(£-£)+/c£-£)+f(£-£) (A., 
dy     dz dz     dx dx     dy 

where Ax, A , A. are the components of A . From (Al), the expression for VH  is 

dydx    dzdx dy2     dzdy 

dydz     dz 

Next, VxP* is given by 

-     - dP*    dPx     « dPx    dPx 

Equating like components between (A2) and (A3) gives the three equations 

dP* 

dy 

dp; 

dz 
_9H 

dydx 

*A, 

dzdx 

dPx
x 

dz 

dPx 

dx 
_d2Az 

dy2 dzdy 

dp; dPx _d2Az #A, 
dx dy dydz dz2 

From (A4) it is clear that P" and P* can be represented as 

p; 
J_A± 

dx 

p; dx 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

since the order of differentiation can be changed in Cartesian coordinates. What remains is to show that the 
selection of Px and Px in (A7) and (A8) are consistent with (A5) and (A6). Placing (A8) into (A5) and taking 

the partial derivative with respect to y gives 
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££-i.(£k + £4o_i^_ (A9) 
dydz     dy   dx2      dy2 '    dy2dz 

However, Hx is also a solution to Laplace's equation as shown by (15) and (16) of the main text, and 
can be written from (Al) as 

a2   dAz    dA    |  d
2   8AZ dA} 

dxlK dy     dz      dy2^ dy dz 

d2 dAz    dA 

dz2 dy     dz 

(A10) 

+—(^—^) = 0 

which can be rearranged to give 

d .d2Az    d
2A,    d2AzX 

dyKdx2      dy2      dz2) 

dzK dx2      dy2      dz2 ' 

(All) 

Using (All) with (A9) and reducing produces 

d2p:     d  d2Ay    d
2Ay    d>Az, 

 — = —(—T- + —^- -) (A12) 
dydz    dz   dx2      dz2     dydz 

Placing (A7) into (A6) and taking the partial derivative with respect to z gives an expression that is 
identical to (A12). Therefore, the choice of P* and Pf given in (A7) and (A8) are consistent with (A4) 
through (A6). 

In this appendix, it has been shown that P' exists such that VHX =VxP*. In addition, the 

expressions for the three Cartesian components of Fx have been determined. Similarly, it can be 
shown that P " and Pz exist such that VH  =VxPy and VH = V x P'. 

10 
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